Overview

Contributions of L2ECM :

1.We propose the model of Local Log-Euclidean Covariance Matrix (L2ECM) for
representing the neighboring correlation of multiple image cues. By L2ECM, we
produce a novel vector valued-image which captures the local structure of the
original one .

2.The benefits of the L2ECM are that it preserves the manifold structure of the
covariance matrices, while enabling efficient and flexible operations in the
Euclidean space instead of in the Riemannian manifold.
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Fig. 1. Overview of L2ECM (3-D raw features are used for illustration). (a) shows the
modeling methodology of L2ECM. Given an image /(x,y), the raw feature image f (x,y) is
first extracted; then the tensor-valued image C(x,y) is obtained by computing the
covariance matrix for every pixel; after the logarithm of C(x,y), the symmetric matrix
logC(x,y) is vectorized to get the 6-D vector-valued image denoted by vlogC(x,y), slices of
which are shown at the bottom-right. (b) shows the modeling methodology of Tuzel et al.
—only one global covariance matrix is computed for the overall image of interest.

Motivation

Inspired by the structure tensor which computes the second-order moment of
image gradients for representing local image properties, and the Diffusion Tensor
Imaging (DTI) which produces tensor-valued image characterizing the local tissue
structure, our motivation is to represent the local image properties via covariance
matrices capturing the correlation of various image cues.
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Table 1. Comparision of Tensor-valued (Matrix-valued) images

Log-Euclidean Framework on SPD Matrices
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The Log-Euclidean framework [8] establishes the theoretical foundation of our
methodology, in which we compute the logarithms of SPD matrices which are
then handled with Euclidean operations.

The briefly description is given below:

Let S(n) and SPD(n) be the spaces of n by n symmetric matrices and SPD matrices,

respectively .

1) The Lie group of SPD(n) is isomorphic and diffeomorphic to S(n).

2) SPD(n) with the bi-invariant metrics is isometric to S(n) with the associated
Euclidean metrics.

3) The Lie group isomorphism exponential mapping from the Lie algebra of S(n)
to SPD(n) can be smoothly extended into an isomorphism of vector spaces.

The key matrix operators: Matrix exponential and logarithm

By eigen-decompositions =UAU", the exponential of a S € S(n) can be computed
o exp(S) = U - Diag(exp(4,), +-,exp(4,))- U"
For any SPD matrix S€ SPD(n), there exists a unique logarithm in S(n):

log(S) = U- Diag(log(4,),--,log(4,)) - U

Lie group structure on SPD(n)

SPD(n) with the associated logarithmic multiplication has Lie group structure:

S, 08, 2 exp(log(S,) +l0g(S,))

where S, S, € SPD(n).
Vector space structure on SPD(n)

The commutative Lie group SPD(n) admits a bi-invariant Riemannian metrics
and the distance between two matrices S,; S, is

d(8,,8,) =l log(S,) —log(S,) I
where [If]l is the Euclidean norm in the vector space S(n). This bi-invariant
metrics is called Log-Euclidean metrics, which is invariant under similarity
transformation. For a real number «, define the logarithmic scalar multiplication
between « and a SPD matrix S :
a®S2exp(alog(s)) =S

Provided with logarithmic multiplication and logarithmic scalar multiplication

, the SPD(n) is equipped with a vector space structure.

[8]Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on
symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. (2006) /
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Provided with the raw feature vectors, we can obtain a tensor-valued image by computing
'the covariance matrix C(x, y) at every pixel:
C(XVY):W > @ Y) =T EK,Y) - F(x,y)
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\where f (x,y) which, for exan;'p(lxé,y ’F\Sa'(sx‘t?]e following form: .
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Because of its symmetry, we perform half-vectorization of logC(x, y), denoted by viogC(x,y)
i.e., we pack into a vector in the column order the upper triangular part of logC(x, y). The
final LZECM feature descriptor can be represented as

vlog C(x, ) =[ VI0g C,(x, y) VIog C, (X,Y) ... VIOG Cyy 2 (X, V) |
The covariance matrices can be computed efficiently via the Integral Images.
The L2ECM may be used in a number of ways:
— It may be seen as “imaging” technology by which various novel multi-channel images are
produced. When n = 2, by combinations of varying raw features, e.g. two components of
gradients, we obtain different 3-D “color” images that may be suitable for a wide variety of
image or vision tasks.
|- Statistical modeling of the L2ECM features is straightforward by probabilistic mixture
models, e.g. Gaussian mixture model (GMM), principal component analysis (PCA), etc. This
'way, the geometric structure of covariance matrices is preserved while avoiding directly
computational expensive algorithms in Riemannian space.
— We can straightforwardly apply L2ECM features to a variety of machine learing methods,
isuch as, SVM, adaboost, random forest, in the same manner of conventional vector.

L2ECM Feature Image

Applications of LZECM Features

Statistical modeling by the second-order moment

Human Detection
For performance ion, we
exploit the INRIA person dataset , a
challenging benchmark dataset . It
includes 2416 positive, normalized
images and the 1218 person-free
images for training, together with 288
images of humans and 453 person-
free images for testing.
For a normalized image (96x160), we
first compute the L?ECM feature image.  2af
Then we divide the vector valued =
image into 12 overlapping, 32 x 32
blocks with a stride of 16 pixels. We
compute for each block the second-
order moment (covariance matrix)
which is again subject to matrix
logarithm and half-vectorization. The
resulting feature for the whole,
normalized image is a 1440-
dimensional vector. We exploit the
linear SVM with default parameters
for classification.
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Fig. 3. DET curves of human detection on the
INRIA person dataset.

Fig.2. Some samples on the INRIA person dataset.
@] Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification y

texture and object categories: A comprehensive study. Int. J. Comput. Vision 73 (2007) 213-238

Texture Classification

a N

The Brodatz database and KTH-TIPS database are used for performance evaluation. The
Brodatz dataset contains 111 textures (texture D14 is missing); KTH-TIPS database has 10
texture classes each of which is represented by 81 image samples.

For each image, we first compute the L2ECM feature image; the feature image is then
divided into four patches the covariance matrices of which are computed; KNN algorithm
(k = 5) is used for classification in our method. The votes of the four matrices associated
with this testing image determine its classification.

For comparison, Lazebnik’s method , Varma&zZisserman method, Hayman’s method ,
global Gabor Filters (Manjunath, B.) , and Harris detector+Laplacian detector+SIFT
descriptor+SPIN descriptor((HS+LS)(SIFT+SPIN))[29] are used.
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Fig. 4. Texture classification on the Brodatz (left) and KTH-TIPS (right) databases.

Object Tracking
We use similar tracking framework as Tuzel et al. except covariance matrix computation
and model update. The difference of covariance matrix computation is shown in Fig.5.
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Fig. 5. Covariance matrix computation in the L2ECM (left) and Tuzel (right) trackers.

Image Seq.. Method Dist. err (pixels) Succ. frames
Carsea. Tuzel 10.76 ¢ 5.72 190/150
M 7.5 + 3.38 190/150
Face seq. Tuzel 20.44:+ 13.87 370/370
VECM 4.5+ 3.87 370/370
Mall seq. Tuzel 30,92 16.58 116/190
LECM 17.67+ 10.45 190/190
Table 2. Comparison of average

tracking errors (mean: std) and number
of successful frames vs total frames.

Fig. 6. Tracking results. In each panel,
the results of Tuzel tracker and L2ECM &3

tracker are shown in the first and -
second rows, respectively. Ml by y
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