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Abstract. This paper presents Local Log-Euclidean Covariance Matrix
(L2ECM) to represent neighboring image properties by capturing cor-
relation of various image cues. Our work is inspired by the structure
tensor which computes the second-order moment of image gradients for
representing local image properties, and the Diffusion Tensor Imaging
which produces tensor-valued image characterizing the local tissue struc-
ture. Our approach begins with extraction of raw features consisting of
multiple image cues. For each pixel we compute a covariance matrix in
its neighboring region, producing a tensor-valued image. The covariance
matrices are symmetric and positive-definite (SPD) which forms a Rie-
mannian manifold. In the Log-Euclidean framework, the SPD matrices
form a Lie group equipped with Euclidean space structure, which en-
ables common Euclidean operations in the logarithm domain. Hence,
we compute the covariance matrix logarithm, obtaining the pixel-wise
symmetric matrix. After half-vectorization we obtain the vector-valued
L2ECM image, which can be flexibly handled with Euclidean operations
while preserving the geometric structure of SPD matrices. The L2ECM
features can be used in diverse image or vision tasks. We demonstrate
some applications of its statistical modeling by simple second-order cen-
tral moment and achieve promising performance.

1 Introduction

Characterizing local image properties is of great research interest in recent years
[1]. The local descriptors can be either used sparsely for describing region of
interest (ROI) extracted by the region detectors [2], or be used at dense grid
points for image representation [3, 4]. They play a fundamental role for success
of many middle-level or high-level vision tasks, e.g., image segmentation, scene
or texture classification, image or video retrieval and person recognition. It is
challenging to present feature descriptors which are highly distinctive and robust
to photometric or geometrical transformations.

The motivation of this paper is to present a general kind of image descriptors
for representing local image properties by fusing multiple cues. We are inspired
by the structure tensor method [5, 6] and Diffusion Tensor Imaging (DTI) [7],
both concerning tensor-valued (matrix-valued) images and enjoying important
applications in image or medical image processing. The former computes second-
order moment of image gradients at every pixel, while the latter associates to
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each voxel a 3-D symmetric matrix describing the molecular mobility along three
directions and correlations between these directions. Our methodology consists
in the pixel-wise covariance matrix for representing the local image correlation of
multiple image cues. This leads to the model of Local Log-Euclidean Covariance
matrix, L2ECM. It can fuse multiple image cues, e.g., intensity, lower- or higher-
order gradients, spatial coordinates, texture, etc. In addition, it is insensitive
to scale and rotation changes as well as illumination variation. Comparison of
structure tensor, DTI and L2ECM is presented in Table 1. Our model can be
seen as a generalization of the structure tensor method; it can also be interpreted
as a kind of “imaging” method, in which each pixel point is associated with
logarithm of a covariance matrix, describing the local image properties through
the correlation of multiple image cues.

Table 1. Comparision of Tensor-valued (Matrix-valued) images

Structure Tensor DTI L2ECM[
I2
x IxIy

IxIy I2
y

] D11 D12 D13

D12 D22 D23

D13 D23 D33

 C =


C11 · · · C1n

...
...

...
Cn1 · · · Cnn

−−→
vlog


vlogC1 · · · vlogCm−n+1

. . .
...

vlogCm


2nd-order momen-
t of partial deriva-
tives of image I

w.r.t x, y.

3×3 symmetric matrix
describing molecules d-
iffusion

Logarithm of n×n (n=2∼5) covariance matrix C

of raw features followed by half-vectorization (m =

(n2 + n)/2 due to symmetry)

Fig. 1(a) shows the outline of the modeling methodology of L2ECM. Given
an image I(x, y), we extract raw features for all pixels, obtaining a feature map
f(x, y) which may contain intensity, lower- or higher-order derivatives, spatial
coordinates, texture, etc. Then for every pixel point, one covariance matrix is
computed using the raw features in the neighboring region around this pixel. We
thus obtain a tensor-valued (matrix-valued) image C(x, y). By computing the
covariance matrix logarithm followed by half-vectorization, we obtain the vector-
valued L2ECM image which can be handled with Euclidean operations. For
illustration purpose, 3-dimensional (3-D) raw features are used which comprising
intensity and the absolute values of partial derivatives of image I w.r.t x, y; the
resulting L2ECM features are 5-D and the corresponding slices are shown at the
bottom-right in Fig. 1(a). Refer to section 3 for details on L2ECM features.

The covariance matrices are symmetric and positive-definite (SPD), the s-
paces of which is not a Euclidean space but a smooth Riemannian manifold.
In the Log-Euclidean framework [8], the SPD matrices form a commutative Lie
group which is equipped with a Euclidean structure. This framework enables
us to compute the logarithms of SPD matrices, which can then be flexibly and
efficiently handled with common Euclidean operations. Our technique avoids
complicated and computationally expensive operations such as the geodesic dis-
tance, intrinsic mean computation or statistical modeling directly in Riemannian
manifold. Instead, we can conveniently operate in the Euclidean space.
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Fig. 1. Overview of L2ECM (3-D raw features are used for illustration). (a) shows the
modeling methodology of L2ECM. Given an image I(x, y), the raw feature image f(x, y)
is first extracted; then the tensor-valued image C(x, y) is obtained by computing the
covariance matrix for every pixel; after the logarithm of C(x, y), the symmetric matrix
logC(x, y) is vectorized to get the 6-D vector-valued image denoted by vlogC(x, y),
slices of which are shown at the bottom-right. Refer to Section 3 for details on L2ECM.
(b) shows the modeling methodology of Tuzel et al. [9]–only one global covariance
matrix is computed for the overall image of interest.

The covariance matrix as a region descriptor was first proposed by Tuzel
et al. [9], the modeling methodology of which was illustrated in Fig. 1(b). The
main difference is their global modeling vs our local one: the former computes one
covariance matrix for the overall image region of interest; while the latter com-
putes a covariance matrix for every pixel point. Above all, Tuzel et al. employed
affine-Riemannian metric [10] which is known to have high computational cost
in computations of geodesic distance and statistics, e.g., the intrinsic mean, the
second-order moment, mixture models or Principal Component Analysis (PCA),
in the Riemannian space [11]. This may make the modeling of pixel-wise covari-
ance matrices prohibitively inefficient. By contrast, we employ Log-Euclidean
metric [8] which transforms the operations from the Riemannian space into Eu-
clidean one so that the above-mentioned limitations are overcome.

The remainder of this paper is organized as follows. Section 2 reviews the
papers related to our work. Section 3 describes in detail the L2ECM features
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and the underlying theory. Applications of statistics modeling of L2ECM by the
second-order central moment are presented in section 4. The conclusion is given
in section 5.

2 Related Work

The natural choice for region representation is to vectorize the intensities or
gradients [12] of pixels in the region. The most commonly used techniques are
modeling image gradient distributions through histograms. The Scale Invariant
Feature Transform (SIFT) descriptor [13] uniformly partitions an image region
into small cells and in each one an orientation histogram is computed, which
results in a 3D histogram of image gradient position and angles. The Gradient
Location and Orientation Histogram (GLOH) [1] is an extension of the SIFT
which quantizes the patch into log-polar cells instead of cartesian ones. Similar
techniques are also used in Histogram of Orientation Gradient (HOG) that are
particularly suitable for human detection [14]. SURF [15] and DAISY [16] de-
scriptors retain the strengths of SIFT and GLOH and can be computed quickly at
every pixel point. Other approaches may be based on spatial-frequency analysis,
image moments, etc. For an overview of local descriptors and their performance
evaluation, one may refer to [1]

Based on the global covariance descriptor, Tuzel et. al presented approaches
for human detection, texture classification or object tracking [9, 17, 18]. The un-
derlying theory of their approaches is the computation of intrinsic distance and
mean of covariance matrices by the affine-invariant Riemannian metric. In [19],
a novel online subspace learning method is presented for adapting to appear-
ance changes during tracking. They employed Log-Euclidean metric rather than
affine-invariant Riemannian one so that the mean and PCA can be computed
efficiently in the Euclidean space. By augmenting the lower triangular matrix of
Cholesky factorization of the covariance matrix and the mean vector, the Shape
of Gaussian (SOG) descriptor is introduced and its Lie group structure is ana-
lyzed [20]. Nakayama et al. [21] used both covariance matrix and the mean vector
via Gaussian distribution to express statistics of dense features such as SIFT [13]
or SURF [15]; they presented some kernel metrics based on the theory of infor-
mation geometry for scene categorization. A novel method was proposed in [22]
for sparse decomposition of covariance matrices. The above papers employed the
covariance matrix as a global descriptor in the sense that one covariance matrix
is computed for representing the overall object region.

The structure tensor has a long history [5] and enjoys successful applications
ranging from image segmentation, motion estimation to corner detection. Be-
cause DTI is able to provide at the microscopic level the information on tissue
structure, it has been applied in many studies on neuroscience, neurodevelop-
ment, neurodegenerative studies etc. Review of the two techniques are beyond
the scope of this paper. One may refer to [6] for recent advances and development
on structure tensor and DTI.
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3 Local Log-Euclidean Covariance Matrix (L2ECM)

The space of SPD matrices is not a vector space but a Riemannian manifold
(an open convex half-cone). Hence, the conventional Euclidean operations, e.g.,
the Euclidean distance, mean or the statistics do not apply. Two class of Rie-
mannian framework have been presented for dealing with SPD matrices: the
affine-invariant Riemannian framework [10, 23] and the Log-Euclidean Rieman-
nian framework [8]. The latter has almost the same good theoretical properties
as the former, and in the meantime enjoys a drastic reduction in computational
cost. In the following we first introduce briefly the Log-Euclidean Framework
(refer to [8] for details) and then present the proposed L2ECM features.

3.1 Log-Euclidean Framework on SPD Matrices

Matrix exponential and logarithm The matrix exponential and logarithm
are fundamental to the Log-Euclidean framework. Let SPD(n) and S(n) de-
note the space of n × n real SPD matrices and n × n real symmetric matrices,
respectively. Any matrix S ∈ S(n) has the eigen-decomposition of the form
S = UΛUT , where U is an orthonormal matrix and Λ = Diag(λ1, · · · , λn) is
a diagonal matrix composed of the eigenvalues λi of S. Furthermore, if S is
positive-definite, i.e., S ∈ SPD(n), then λi > 0 for i = 1, . . . , n. The expo-
nential map, exp: S(n) 7→ SPD(n), is bijective, i.e., one to one and onto. By
eigen-decomposition, the exponential of a S ∈ S(n) can be computed as

exp(S) = U ·Diag(exp(λ1), . . . , exp(λn)) ·UT (1)

For any SPD matrix S ∈ SPD(n), it has a unique logarithm log(S) in S(n):

log(S) = U ·Diag(log(λ1), . . . , log(λn)) ·UT (2)

The exponential map, exp: S(n) 7→ SPD(n), is diffeomorphism, i.e., the bijective
map exp and its inverse log are both differentiable.
Lie group structure on SPD(n) For any two matrices S1,S2 ∈ SPD(n),
define the logarithmic multiplication S1 ⊙ S2 as

S1 ⊙ S2 , exp(log(S1) + log(S2)) (3)

It can be shown that SPD(n) with the associated logarithmic multiplication
⊙ satisfies the following axioms: (1) SPD(n) is closed, i.e., S1 ∈ SPD(n) and
S2 ∈ SPD(n) implies S1 ⊙S2 ∈ SPD(n). (2) ⊙ is associative: (S1 ⊙S2)⊙S3 =
S1 ⊙ (S2 ⊙ S3). (3) For the n× n identity matrix I, S⊙ I = I⊙ S = S. (4) For
matrix S and its inverse S−1, S⊙S−1 = S−1⊙S = I. (5) It is commutative, that
is, S1 ⊙ S2 = S2 ⊙ S1. In viewing of the above, SPD(n) is a commutative Lie
group. Actually, (SPD(n),⊙, I) is isomorphic to its Lie algebra spd(n) = S(n).
Vector space structure on SPD(n) The commutative Lie group SPD(n)
admits a bi-invariant Riemannian metric and the distance between two matrices
S1,S2 is

d(S1,S2) =
∥∥log(S1)− log(S2)

∥∥ (4)
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where || · || is the Euclidean norm in the vector space S(n). This bi-invariant
metric is called Log-Euclidean metrics, which is invariant under similarity trans-
formation. For a real number λ, define the logarithmic scalar multiplication
between λ and a SPD matrix S

λ~ S , exp(λ log(S)) = Sλ (5)

Provided with logarithmic multiplication (3) and logarithmic scalar multiplica-
tion (5), the SPD(n) is equipped with a vector space structure.

The desirable property of such a vector space structure of SPD(n) is that,
by matrix logarithm, the Rimannian manifold of SPD matrices is mapped to the
Euclidean space. As such, in the logarithmic domain, the SPD matrices can be
handled with simple Euclidean operations and, if necessary, the results can be
mapped back to the Riemannian space via the matrix exponential. This greatly
facilitates the statistical analysis of SPD matrices, for example, the geometric
mean of N SPD matrices S1, · · · ,SN is the algebraic mean (the zeroth-order
moment) of their logarithms mapped back to SPD(n), which has a closed form
ELE(S1, · · · ,SN ) = exp

(
1
N

∑N
i=1 log(Si)

)
.

3.2 L2ECM Feature Image

We describe the feature descriptor of L2ECM with the gray-level image. Given
an image of interest, I(x, y), (x, y) ∈ Ω, we can extract the raw feature vector
f(x, y) which, for example, has the following form:

f(x, y) =
[
I(x, y) |Ix(x, y)| |Iy(x, y)| |Ixx(x, y)| |Iyy(x, y)|

]T (6)

where | · | denotes the absolute value, Ix (resp. Ixx) and Iy (resp. Iyy) denote the
first (resp. second)-order partial derivative with respect to x and y, respectively.
Other image cues, e.g., spatial coordinates, gradient orientation or texture fea-
ture can also be included in the raw features. For a color image, the gray-levels
of three channels may be combined as well.

Provided with the raw feature vectors, we can obtain a tensor-valued image
by computing the covariance matrix function C(x, y) at every pixel

C(x, y) =
1

NSr − 1

∑
(x′,y′)∈Sr(x,y)

(f(x′, y′)− f̄(x, y))(f(x′, y′)− f̄(x, y))T (7)

f̄(x, y) =
1

NSr

∑
(x′,y′)∈Sr(x,y)

f(x′, y′)

where Sr(x, y) = {(x′, y′)||x − x′| ≤ r/2, |x − x′| ≤ r/2, (x, y) ∈ Ω} and Nsr

denotes the number of points inside Sr. In practice, there may exist covariance
matrices which are not positive-definite and which we should take care in compu-
tations. From our experience with computation of a huge number of covariance
matrices, involved in human detection and texture classification in real images,
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this violation is really a rare event. With increase of r, the local image structure
in larger scales will be captured. Small r may be helpful in capturing fine local
structure, which may however result in the singularity of the covariance matrix
due to insufficient number of samples for estimation. In our experiments r ≥ 16
is appropriate for most applications. The covariance matrix is robust to noise
and insensitive to changes of scale, rotation and illumination [9].

We wish to exploit these covariance matrices as fundamental features for vi-
sion applications. It is known that the Affine-Riemannian framework involves
intensive computations of matrix square root, matrix inverse, matrix exponen-
tial and logarithm. Hence, we utilize the competent Log-Euclidean framework:
C(x, y) in the commutative Lie group SPD(n) is mapped by matrix logarithm
to logC(x, y) in the vector space of S(n). logC(x, y) can then be handled with
the Euclidean operations and the intensive computations involved in Affine-
Riemannian framework are avoided. It also facilitates greatly further analysis or
modeling of the SPD matrices.

From the tensor-valued image C(x, y) ∈ SPD(n), we compute the logarithm
of the covariance matrix C(x, y) according to Eq. (2). logC(x, y) is a symmetric
matrix of Euclidean space, i.e., logC(x, y) ∈ S(n). Because of its symmetry, we
perform half-vectorization of logC(x, y), denoted by vlogC(x, y), i.e., we pack
into a vector in the column order the upper triangular part of logC(x, y). The
final L2ECM feature descriptor can thus be represented as

vlogC(x, y) =
[
vlogC1(x, y) vlogC2(x, y) . . . vlogCn(n+1)/2(x, y)

]
(8)

The covariance matrices can be computed efficiently via the Integral Im-
ages [9]. The computational complexity of constructing the integral images is
O(|Ω|n2), where |Ω| is the image size. The complexity of eigen-decomposition
of all covariance matrices is O(|Ω|n3). In practice, n=2∼5 may suffice for most
problems. In particular, when n=2 or n=3, the eigen-decomposition of covari-
ance matrices can be obtained analytically; hence, the L2ECM features, which
are 3-D (n=2) or 6-D (n=3), can be computed fast through integral images and
closed-form of eigen-decomposition.

The L2ECM may be used in a number of ways:

– It may be seen as “imaging” technology by which various novel multi-channel
images are produced. When n = 2, by combinations of varying raw features,
e.g., Ix and Iy, Ixx and Iyy, or I and

√
I2x + I2y , we obtain different 3-D

“color” images that may be suitable for a wide variety of image or vision
tasks. Considering its desirable properties, it is particularly interesting to
use the 3-D L2ECM images instead of the original ones for object tracking
[24, 25]. In the cases of larger n, we achieve compact L2ECM features which
can be densely sampled and packed as region descriptors.

– It enables a wide variety of statistical techniques applicable to covariance
matrices. For example, it is straightforward to model L2ECM features by
probabilistic mixture models, e.g, Gaussian mixture model (GMM), principal
component analysis, etc. This way, the geometric structure of covariance
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matrices is preserved while avoiding computationally expensive algorithms
in Riemannian space [26, 23].

– We can describe the region statistics simply by the first-order (mean) or
second-order moments (covariance matrix) of L2ECM features. Note that
they actually represent the lower-order statistics of SPD matrices in the
logarithm domain.

In the following, we demonstrate applications of statistical modeling of L2ECM
features by the second-order moment (covariance matrix).

4 Applications of L2ECM Features

In this section, applications of L2ECM features are exhibited to human detection,
texture classification and object tracking.

4.1 Human Detection

For performance evaluation, we exploit the INRIA person dataset [14], a chal-
lenging benchmark dataset containing large changes in the pose and appearance,
partial occlusions, illumination variation and cluttered background. It includes
2416 positive, normalized images and 1218 person-free images for training, to-
gether with 288 images of humans and 453 person-free images for testing.

The normalized image is of 96×160 pixels and the centered 64×128 pixels
window is used. This way, the boundary effects are eliminated. For a normalized
image, we first compute the L2ECM feature image (r = 16). Then we divide the
vector-valued image into 12 overlapping, 32×32 blocks with a stride of 16 pixels.
We compute for each block the second-order moment (covariance matrix) which
is again subject to matrix logarithm and half-vectorization. The resulting feature
for the whole, normalized image is a 1440-dimensional vector. We exploit the
linear SVM [27] with default parameters for classification. Our training process
is similar to that of Dalal and Tiggs [14].

Fig. 2 shows the Detection Error Tradeoff (DET) curves on a log-log scale
of the proposed method and those of [14] and [17]. The DET curves of other
methods are produced from their respective papers. It is clear that our method
is superior to the methods that uses the linear or kernel SVM proposed in [14].
Our method is also better than the method of classification on Riemannian
manifold [17] when FFPW≥7×10−4, but the method of [17] outperforms when
FFPW<7×10−4. At 10−4 FFPW, our method has the lowest miss rate of 5.7%
while [17] has the second lowest of 6.8%.

4.2 Texture Classification

In this section, we apply the L2ECM features to texture classification. The Bro-
datz database and KTH-TIPS database [28] are used for performance evaluation.
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Fig. 2. DET curves of human detection in the INRIA person dataset.

Brodatz Dataset The Brodatz dataset contains 111 textures (texture D14 is
missing); each texture is represented by one 640×640 image. Note that though
the dataset does not integrate scale, viewpoint or illumination changes, it in-
cludes non-homogenous textures which pose difficulty for classification.

For each texture, the corresponding 640×640 image is divided into 49 overlap-
ping blocks, each of which is of 160×160 pixles with a block stride of 80. Twenty
four images of each class are randomly selected for training and the remaining
ones for testing. For each image, we first compute the L2ECM feature image;
it is then divided into four 80×80 patches, the covariance matrices of which
are computed; the resultant four covariance matrices are subject to logarithmic
operation and half-vectorization. When testing, each covariance matrix of the
testing image is compared to all covariance matrices of the training set and its
label is determined by KNN algorithm (k = 5). The maximum votes of the four
matrices associated with this testing image determine its classification. To avoid
bias, the experiments are repeated twenty times and the result is computed as
the average value and standard deviation over the twenty runs.

Fig. 3(a) shows the classification accuracy of our method and the following
six texture classification approaches: Harris detector+Laplacian detector+SIFT
descriptor+SPIN descriptor (HLSS) [29], Lazebnik’s method [30], VZ-joint [31],
and Jalba’s method [32], Hayman’s method [28], and Tuzel et al.’s method [9].
The data of other methods are duplicated from their respective papers. Our
method obtains the best classification accuracy; the random covariances method
of Tuzel et al. obtains the second best accuracy which, however, does not report
standard deviation. These two are far better than the remaining ones.

KTH-TIPS Database[28] This dataset is challenging in the sense that it
contains varying scale, illumination and pose. There are 10 texture classes each
of which is represented by 81 image samples. The size of samples is 200×200
pixels.

The classification method is similar to that in the Brodatz database. For each
sample, the L2ECM feature image is computed (r = 32). Every feature image is
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Fig. 3. Texture classification in the Brodatz (a) and KTH-TIPS (b) databases.

uniformly divided into four blocks and a global covariance matrix is computed
on each block. The logarithms of these covariance matrices are subject to half-
vectorization.

Fig. 3(b) shows the classification accuracy against the number of training
images. For comparison, the classification results of the following methods are
also shown [29]: Lazebnik’s method [30], VZ-joint [31], Hayman’s method [28],
global Gabor Filters(GG) [33], and Harris detector+Laplacian detector+SIFT
descriptor+SPIN descriptor((HS+LS)(SIFT+SPIN))[29]. It can be seen that the
classification accuracy of our method is much better than all the others.

4.3 Object Tracking

Based on the covariance matrix as a global region descriptor, we compare our
method based on L2ECM (L2ECM tracker for short) and that of Tuzel et al. [18]
(Tuzel tracker for short). Fig. 4 shows different covariance matrix computation
in these two methods. In L2ECM tracker, 15× 15 covariance matrices are com-
puted from the L2ECM image (r = 16, 5-D raw features (6) and 15-D L2ECM
feature); in Tuzel tracker, 9×9 covariance matrices are computed from the raw
feature image, in which every 9-D feature vector comprises x- and y-coordinates,
intensity, the first- and second-order partial derivatives w.r.t x and y, gradient
magnitude and orientation. Initialization of two trackers are both by hand in
the first frame and three image sequences are used for comparison. The aver-
age tracking time of L2ECM tracker is approximately one half of that of Tuzel
tracker. The most time-consuming procedure of Tuzel tracker is the model up-
date [18, Sec. 2.4], which involves the mean computation via the affine-invariant
Riemannian metrics known to be iterative and very expensive [10, 11].

Car sequence This sequence (190 frames, size: 384×288) concerns a surveil-
lance scenario, available at http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-
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Fig. 4. Covariance matrix computation in the L2ECM (left) and Tuzel (right) trackers.

dataset.html. The black car running towards the left is the object of interest. In
the sequence, there exist pose variation of the object and cars nearby in the back-
ground which have similar appearances with the object. Both trackers succeed
in following the object throughout the sequence. As seen in Table 2, the L2ECM
has smaller tracking errors than the Tuzel tracker. Some sample tracking results
are shown in Fig. 5 (top pannel).

Face sequence In the face sequence (1480 frames, size: 320×240) the object
undergoes large illumination changes [34]. We track the object every four frames
(so there are 370 frames in total) because the object motion between consecutive
frames is very small. Though both trackers can follow the object across the
sequence, the L2ECM tracker has much smaller tracking error than the Tuzel
tracker. The average error is presented in Table 2. Fig. 5 (middle panel) shows
some sample tracking results.

Mall sequence This sequence (190 frames, size: 360×288) is filmed by a moving
camera in a mall [35]. The object (an adult along with a child) has large non-rigid
pose variations and illumination changes. There also occur partial occlusions in
the sequence. The Tuzel tracker loses the object around frame #116 despite the
model update scheme, while the L2ECM tracker successfully follows the object
across the sequence. It can be seen from Table 2 that the L2ECM tracker’s error
is much smaller than the Tuzel tracker. Some sample results are shown in Fig.
5 (bottom panel).

Table 2. Comparison of average
tracking errors (mean±std) and
number of successful frames vs total
frames.

Image seq. Method Dist. err. (pixels) Succ. frames

Car seq. Tuzel 10.76± 5.72 190/190
L2ECM 7.55± 3.38 190/190

Face seq. Tuzel 20.44±13.87 370/370
L2ECM 4.45± 3.87 370/370

Mall seq. Tuzel 30.92±16.58 116/190
L2ECM 17.67±10.45 190/190
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Fig. 5. Tracking results in the car sequence (top panel), face sequence (middle panel)
and mall sequence (bottom panel). In each panel, the results of Tuzel tracker and
L2ECM tracker are shown in the first and second rows, respectively.

5 Conclusion

The L2ECM is analogous to the structure tensor and Diffusion tensor, which
can be seen as an “imaging” technology in producing novel multi-channel images
that capture the local correlation of multiple cues in the original image. We
compute a tensor-valued image from the original one in which each point is
associated with a covariance matrix computed locally. Through matrix logarithm
and half-vectorization we obtain the vector-valued, L2ECM feature image. The
theoretical foundation of L2ECM is the Log-Euclidean framework, which endows
the commutative lie group formed by the SPD matrices with a linear space
structure. This enables the common Euclidean operations of covariance matrices
in the logarithmic domain while preserving their geometric structure.
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The paper demonstrates applications of simple statistical modeling of L2ECM
by the second-order moment in human detection, texture classification and ob-
ject tracking. We achieve comparable performance with or superior performance
over the state-of-the-art methods. In the future work, we are interested in sta-
tistical modeling of L2ECM by mixture models and study of its applications in
diverse image or vision tasks.
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