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• Global Average Pooling: 
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Min Lin, Qiang Chen, Shuicheng Yan. Network in network. In ICLR, 2014. 



Global Second-order Pooling 

Image Local Representation of image regions 
of increasing receptive field 

Global Representation 
of image 

Classifier 

Global average pooling 

Min Lin, Qiang Chen, Shuicheng Yan. Network in network. In ICLR, 2014. 

w 
h 

p 
Last feature maps 

• Global Average Pooling: 
   Widespread in Inception, ResNet, DenseNet etc. 

ch
an

ne
l  

width 
h 

Last feature maps 



Global Second-order Pooling 
• Global Covariance Pooling 
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J. Carreira et al. Semantic Segmentation with Second-Order Pooling. in ECCV, 2012. 
J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015. 

log( )∑

covariance 
matrix ∑

Global Second-order Pooling 
From O2P (ECCV’12) to DeepO2P (ICCV’15) 



Global Second-order Pooling 
• From O2P (ECCV’12) to DeepO2P (ICCV’15) 
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[DeepO2P] C. Ionescu et al. Matrix Backpropagation for Deep Networks with Structured Layers.  
                   In ICCV, 2015. 
 

First end-to-end global covariance pooling 

Backprogation of Singlular Value           
    Decompositon (SVD) 

Performance is not competitive 



Global Second-order Pooling 
• Global Covariance Pooling ─ Blinear CNN (i.e. B-CNN, ICCV’15) 
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First end-to-end global covariance pooling 

Element-wise SQRT+l2 normalziation 

Competitive performance on Fine-grained    
   classification 

[B-CNN] T.-Y. Lin, A. RoyChowdhury, S. Maji. Bilinear CNN models for fine-grained visual recognition.   
                In ICCV, 2015. 
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1. Statistical problem of Small sample/high-dimensionality(n<p ) 

AlexNet: 256/36  

VGG-16: 512/49 

ResNet: 2048/49 
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Global Second-order Pooling 

DeepO2P  and B-CNN fail to well address : 

[DeepO2P] C. Ionescu et al. Matrix Backpropagation for Deep Networks with Structured Layers.  
                   In ICCV, 2015. 
[B-CNN] T.-Y. Lin, A. RoyChowdhury, S. Maji. Bilinear CNN models for fine-grained visual recognition.   
                In ICCV, 2015. 

3. Whether  work on large-scale                          .  

1. Statistical small sample/high dimensionality;  

2. Manifold structure of covariance matrices; 
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Matrix Power Normalization and Fast Training 

• MPN-COV (ICCV’17) 

[MPN-COV] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for  
                       Large-scale Visual Recognition? In ICCV,  2017. 
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0.5 α = performing best 

[MPN-COV] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for  
                       Large-scale Visual Recognition? In ICCV,  2017. 

Matrix Power Normalization and Fast Training 

• MPN-COV (ICCV’17) 

Challenge 1 
Small sample/high-
dimensionality, e.g. 

ResNet, 49/2048 

Challenge 2 
Exploiting geometry of 

covariance spaces 



Small sample/high-dimensionality ( n < p ) 

 O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Analysis,   
88(2):365–411, 2004.  
C. Stein. Lectures on the theory of estimation of many parameters. Journal of Soviet Mathematics, 34(1):1373–1403, 1986.  

Why MPN-COV works:Statistical Insight (qualitatively) 
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Why MPN-COV works:Statistical Insight (qualitatively-FP  

Power-E metric 

Power-E metric relatively shrinks largest eigenvalues 
while stretchs smallest eigenvalues 
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Why MPN-COV works:Statistical Insight (qualitatively-FP) 

Log-E metric over stretchs smallest eigenvalues, 
changing order of significance of eigenvalues 



• Log-E: Smallest eigenvalues affect the gradient considerably  

Power-E metric log-E metric  

Why MPN-COV works:Statistical Insight (qualitatively-FP) 
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• Regularized Maximum Likelihood Estimation (MLE) Method: vN-MLE 
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 • Power Euclidean                                                exploits gemotry 

Why MPN-COV works─Geometric Insight 

[MPN-COV] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for  
                       Large-scale Visual Recognition? In ICCV,  2017. 
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 • Exploiting geometry of covariance spaces 

Why MPN-COV works─Geometric Insight 

[MPN-COV] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for  
                       Large-scale Visual Recognition? In ICCV,  2017. 

Log-E metric 

measures true geodesic 
distance 
The input must be strictly 
positive 

Power-E metric 

measures it 
approximately 
allows non-negative 
number 

log-E metric  
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[MPN-COV] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for  
                       Large-scale Visual Recognition? In ICCV,  2017. 
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[MPN-COV] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for  
                       Large-scale Visual Recognition? In ICCV,  2017. 
[G2DeNet] Qilong Wang, Peihua Li, Lei Zhang. G2DeNet: Global Gaussian Distribution Embedding Network  and  Its   
                   Application to Visual Recognition. In CVPR, 2017 (Oral). 
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Matrix Power Normalization and Fast Training 
• Downside of Eigendecomposition (or SVD) 

[MPN-COV] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for  
                       Large-scale Visual Recognition? In ICCV,  2017. 

MPN-COV (ICCV17) 

Time (ms) taken by EIG/SVD of 256x256 covariance matrix 

Inefficient due to 
GPU unfriendly 

EIG/SVD 



• Iterative matrix square root (CVPR’18) 
 

[iSQRT-COV]  Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance  
                          Pooling Networks by Iterative Matrix Square Root Normalization. In CVPR, 2018. 

very fast! 

inefficient 

Matrix Power Normalization and Fast Training 



Matrix square root is computed  
via GPU-friendly iterative method, 
much faster than GPU-hostile EIG. 

• Iterative matrix square root (CVPR’18) Capturing channel 
correlation  
(2nd-order statistics) 

 cov  
matrix  

Matrix Power Normalization and Fast Training 



Iterative Matrix Square Root Normalization (CVPR’18) 

A Directed Acyclic Graph (DAG)  with Iteration 

[iSQRT-COV]  Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance  
                          Pooling Networks by Iterative Matrix Square Root Normalization. In CVPR, 2018. 
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[iSQRT-COV]  Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance  
                          Pooling Networks by Iterative Matrix Square Root Normalization. In CVPR, 2018. 

Iterative Matrix Square Root Normalization (CVPR’18) 
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Impact of post-compensation on iSQRT-COV with 
ResNet-50 architecture on ImageNet. 

Iterative Matrix Square Root Normalization Gradient ( )
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Evaluation on 
Time (FP+BP, ms) of single meta-layer with  
AlexNet architecture on ImageNet 

[iSQRT-COV]  Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance  
                          Pooling Networks by Iterative Matrix Square Root Normalization. In CVPR, 2018. 



Evaluation on 
• Images per second (FP+BP) of network training with AlexNet architecture. 

Our iSQRT-COV network can make better use of computing power of multi-GPU than MPN-COV 



Evaluation on 
• Convergence curves of different networks trained  with ResNet-50 

architecture on ImageNet. 

Our proposed iSQRT-COV network can converge in much less epochs. 



Evaluation on 
• Evluation on ImageNet 

 
Classes:      1000 
Train:          1.28 million 
Validation:  50k 
Test:            100k 

http://www.image-net.org/ 



Error comparison of second-order networks with first-
order ones on ImagetNet 

 

Evaluation on 

[iSQRT-COV]  Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance  
                          Pooling Networks by Iterative Matrix Square Root Normalization. In CVPR, 2018. 



Generalization to Small-scale Datasets 
• Birds (CUB-200-2011) 

 
 

• Aircrafts (FGVC-aircraft) 
 
 

• Cars (Stanford cars) 
 

Classes Images 

200 11,788 

Classes Images 

100 10,000 

Classes Images 

196 16,185 

[iSQRT-COV]  Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance  
                          Pooling Networks by Iterative Matrix Square Root Normalization. In CVPR, 2018. 
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G2DeNet (CVPR’17) 
• Why not a probability distribution? 
   

 Maximum entropy distribution with specified      
    mean      and covariance   
    – Least prior information  
    – Physical systems tend to be of maximum entropy 

[G2DeNet] Qilong Wang, Peihua Li, Lei Zhang. G2DeNet: Global Gaussian Distribution Embedding Network  and  Its   
                   Application to Visual Recognition. In CVPR, 2017 (Oral). 



G2DeNet (CVPR’17) 
• Why not a probability distribution? 
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[G2DeNet] Qilong Wang, Peihua Li, Lei Zhang. G2DeNet: Global Gaussian Distribution Embedding Network  and  Its   
                   Application to Visual Recognition. In CVPR, 2017 (Oral). 



G2DeNet (CVPR’17) 
• Why not  Global Covariance + Average Pooling? 
   

Capturing Gaussian 
distribution 
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Image Local Representation of image regions 
of increasing receptive field 

Global Representation 
of image 

Classifier 

[G2DeNet] Qilong Wang, Peihua Li, Lei Zhang. G2DeNet: Global Gaussian Distribution Embedding Network  and  Its   
                   Application to Visual Recognition. In CVPR, 2017 (Oral). 

Last feature maps 



Q: How to construct our trainable 
global Gaussian embedding layer? 
    

A:  The key is to give the explicit 
forms of Gaussian distributions. 

Forward 
Propagation 

Riemannian 
Geometry 
Structure 

Algebraic 
Structure 

Backward 
Propagation 

Differentiable 

G2DeNet (CVPR’17) 



Gaussian embedding [TPAMI’17]  

[TPAMI’17] shows space of Gaussians is equipped with a Lie group structure. 

The space of Gaussians is a Riemannian manifold having special geometric structure. 
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[TPAMI’17] Peihua Li, Qilong Wang, Hui Zeng and Lei Zhang. Local Log-Euclidean Multivariate Gaussian Descriptor  
                      and Its Application to Image Classification. TPAMI, 2017. 
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For this purpose, we first give an explicit form of Gaussian. The previous work all show the space of Gaussians is a manifold. Our recent work discloses that the space of Gaussians is not only a manifold, but can be equipped with a Lie group structure. By using Lie group theory, we can first map a Gaussian into a unique positive upper triangular matrix A with Cholesky decomposition on covariance matrix, after that matrix A can be mapped into a SPD matrix P with unique left polar decomposition. Through a series of mappings, a Gaussian is uniquely embedded into a square-rooted SPD matrix. Different from existing methods, our form considers both geometric and algebraic structures of Gaussian. 
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G2DeNet (CVPR’17) 

[G2DeNet] Qilong Wang, Peihua Li, Lei Zhang. G2DeNet: Global Gaussian Distribution Embedding Network  and  Its   
                   Application to Visual Recognition. In CVPR, 2017 (Oral). 
[TPAMI’17] Peihua Li, Qilong Wang, Hui Zeng and Lei Zhang. Local Log-Euclidean Multivariate Gaussian Descriptor  
                      and Its Application to Image Classification. TPAMI, 2017. 
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Gaussian Embedding : 

Y is a function of  convolutional features X. Computing square-root of  Y via SVD. 

G2DeNet (CVPR’17) 

[G2DeNet] Qilong Wang, Peihua Li, Lei Zhang. G2DeNet: Global Gaussian Distribution Embedding Network  and  Its   
                   Application to Visual Recognition. In CVPR, 2017 (Oral). 
[TPAMI’17] Peihua Li, Qilong Wang, Hui Zeng and Lei Zhang. Local Log-Euclidean Multivariate Gaussian Descriptor  
                      and Its Application to Image Classification. TPAMI, 2017. 
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Now, we can compute Gaussian with a square-rooted SPD matrix Y, which is composed of mean and covariance of Gaussian. By using this embedding method, we construct global Gaussian embedding layer with two sub-layers. The first one is matrix partition sub-layer, which writes embedding matrix Y as a function of convolutional features X. The second one is used to compute square-root of embedding matrix Y via SVD. 




Existing Deep CNNs 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 

X

……

Global Pooling LayerInput image Convolutional layers Loss

BP for convolutional layers

or 

Existing global pooling layers assume unimodal distributions, which cannot fully capture 
statistics of convolutional activations. 

Unimodal  
Distributions? 



Existing Deep CNNs 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 

Learning Deep Features for Discriminative Localization. CVPR, 2016  



Mixture Model 

Ensemble of multiple models  
High computational cost as number of CMs gets large, while a small number of 

CMs may be insufficient for characterizing complex distributions.  
Simple direct ensemble will make all CMs tend to learn similar characteristics. 

 
 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 



Deep CNNs with GM-SOP 
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Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 
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Sparsity-constrained Gating Module 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 



Components Models 

 
 

 
 
 
 
 
SR-SOP seems to be a good choice for CM  

 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 
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~ constant 

~ trainable 

Ĵ

~ normal Gaussian distribution 

1
2=Z Σ

SR-SOP (Existing Top Unimodal Pooling)  [CVPR2017, ICCV2017, CVPR 2018] 

~ multivariate generalized Gaussian distribution 

Parametric SR-SOP (Ours) 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 

Parametric Components Models 



Ablation study 

Numbers of N and K 
Training:             Testing:  
1.28M Images     50K Images 



Ablation study 



Experiments on ImageNet-1K 

Methods  Backbone 
Models 

Top-1 
Error 

Top-5 
Error 

Top-1 
Increment 

Top-5 
Increment 

GAP 
ResNet-18 

49.08 24.25 +0.00 +0.00 
SOP 40.32 18.68 +8.76 +5.57 
GM-SOP 38.21 17.01 +10.87 +7.24 
GAP 

ResNet-50 
41.42 18.14 

+5.69 +3.18 
GM-SOP 35.73 14.96 
GAP 

WRN-36-2 
39.55 16.57 

+7.22 +4.22 
GM-SOP 32.33 12.35 

Training:        Testing:  
1.28M             50K 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 



Experiments on Places365 

Methods  Backbone 
Models Top-1 Error Top-5 Error 

GAP 

ResNet-18 

49.96 19.19 
GM-GAP 48.07 17.84 
GAP-8256d 49.99 19.32 
SOP 48.11 18.01 
SR-SOP 47.48 17.52 
GM-SOP 47.18 17.02 

Training:        Testing:  
~1.8M              36.5K 

Qilong Wang et al. Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 



Deep BoVW - NetVLAD 

Relja Arandjelovi´c, et al. NetVLAD: CNN architecture for weakly supervised place recognition. CVPR, 2016.  



Deep BoVW – Simple NetFV 

Lin et al. Bilinear CNNs for Fine-grained Visual Recognition. TPAMI, 2017.  

Simple NetFV: 

NetVLAD: 



Comparison 

Methods Birds CUB-200-2011 FGVC-Aircraft FGVC-Cars 
NetFV [TPAMI’17] 79.9 79.0 86.2 
NetVLAD [CVPR’16] 81.9 81.8 88.6 
B-CNN [ICCV’15] 84.1 84.1 91.3 
G2DeNet (Ours) 87.1 89.0 92.5 

Methods Backbone Top-1 error Top-5 error 
NetVLAD [CVPR’16] 

ResNet-18 
45.16 21.73 

SOP 40.32 18.68 
GM-SOP 38.21 17.01 

FGVC 

64x64 ImageNet-1K 



Conclusion 

 Statistical and geometrical insights 

 Fast convergence, computation-efficient 

 Performing and generalizing much better 



Related Publications 
Global Covariance Pooling 
[1] Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order  Information Helpful for 

Large-scale Visual Recognition? In ICCV,  2017.  

Robust Covariance Estimation  
[5] Qilong Wang, Peihua Li, Wangmeng Zuo, Lei Zhang. RAID-G: Robust Estimation of Approximate 

Infinite  Dimensional Gaussian with Application to Materiel Recognition. In CVPR, 2016. 

Global Gaussian Pooling and Gaussian Embedding 
[2] Qilong Wang, Peihua Li, Lei Zhang. G2DeNet: Global Gaussian Distribution Embedding Network  

and  Its  Application to Visual Recognition. In CVPR, 2017 (Oral). 
[3] Peihua Li, Qilong Wang, Hui Zeng, Lei Zhang. Local Log-Euclidean Multivariate Gaussian 

Descriptor and Its Application to Image Classification. IEEE TPAMI, 2017. 
Fast Training Algorithm 
[4] Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance 

Pooling Networks by Iterative Matrix Square Root Normalization. In CVPR, 2018. 

Multimodal Distribution  
[6] Qilong Wang, Zilin Gao, Jiangtao Xie, Wangmeng Zuo, Peihua Li. Global Gated Mixture of 

Second-order Pooling for Improving Deep Convolutional Neural Networks. In NIPS, 2018. 



All code  are (or will be) released at  
http://peihuali.org 
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