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Context

1
• Higher-order Statistics in Bag-of-Visual-Words (BoVW)

2
• Higher-order Statistics in Codebookless Model (CLM)

3
• Bag-of-Visual-Words VS. Codebookless Model  

4
• Higher-order Statistical Models Meet Deep Features
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Higher-order Statistics   
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3rd-order

Tensor

X
T

X X  X X X
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Bag-of-Visual-Words (BoVW)

2003 - 2012

~75,300

[1] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos. ICCV, 2003. (cited by 6391)

[2] C. Dance, J. Willamowski et al. Visual categorization with bags of keypoints. ECCV Workshop, 2004. (cited by 4767)
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BoVW – Comparison

VOC07

[BoW + 
VQ]

VOC08

[BoW + 
VQ]

VOC09

BoW + 
[VQ+ LLC 
+ SV]

VOC10&11

[BoW + 
Context]

VOC12

[BoW + 
VQ+ LLC 
+ FV]

All winners 

(classification) 

based on BoVW!
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Bag-of-Visual-Words (BoVW)

[1] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos. ICCV, 2003. (cited by 6391)

[2] C. Dance, J. Willamowski et al. Visual categorization with bags of keypoints. ECCV Workshop, 2004. (cited by 4767)

Image Local Features

Dictionary

Histogram

Training Images
0th-order 

coding

SIFT [IJCV03]

Centers of K-means
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BoVW – Soft Coding

[1] Florent Perronnin. Universal and Adapted Vocabularies for Generic Visual Categorization. TPAMI, 2008. 

[2] Van Gemert, et al. Visual Word Ambiguity. TPAMI, 2009.

or

Higher-order Dictionary but  0th-order Coding!

Each atom is a Gaussian.
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BoVW – Super Vector

VLAD:

Super Vector (SV) [BoVW + VLAD]:

[1] Herve J égou et al. Aggregating local descriptors into a compact image representation. CVPR, 2010.

[2] Zhou et al. Image Classification using Super-Vector Coding of Local Image Descriptors. ECCV, 2010.

1st-order Dictionary &1st-order Coding!
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BoVW – Universal GMM

Gaussian Mixture Model as Dictionary

 Adaptive GMM [CVPR, 2008]

 Gaussianized Vector Representation [PRL, 2010]

 Fisher Vector [IJCV, 2013].
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BoVW – Adaptive GMM

Universal GMM

MAP estimation

Liu et al. A similarity measure between unordered

vector sets with application to image categorization.

[CVPR 08]

KL Kernel 

Unstable & High Cost！
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BoVW – Gaussianized Vector 

Universal GMM

Zhou et al. Novel Gaussianized vector representation for improved natural scene categorization. PRL, 2010.

Image Local Features

NN

higher-order Dictionary &1st-order Coding!
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BoVW – Fisher Vector

The steepest descent direction of                    in a Riemannian 

manifold is                          , which is called natural gradient )|(log1  XpI
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Fisher vector:

Tommi S. Jaakkola and David Haussler.  Exploiting generative models in discriminative classifiers. NIPS, 1998. 

Idea: Representing a random sample X with gradients of the distribution 
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BoVW – Fisher Vector

[1] Florent Perronnin et al. Improving the Fisher Kernel for Large-Scale Image Classification. ECCV, 2010.

[2] Sánchez et al. Image classification with the fisher vector: Theory and practice. IJCV, 2013. 

Weight 0th-order

Mean 1st-order

Variance 

2nd-orderUniversal GMM

Local featuresPosterior probability
 , ,k k kw μ σ
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BoVW – Fisher Vector

Universal GMM

Image Local Features

Higher-order Dictionary & 

Higher-order Coding!
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BoVW – Comparison 

Yongzhen Huang, Zifeng Wu, Liang

Wang, Tieniu Tan: Feature Coding in

Image Classification: A Comprehensive

Study. IEEE TPAMI. 36(3): 493-506

(2014)

Fisher Vector  > Super Vector 

> Soft Coding > VQ!
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BoVW – Comparison

VOC07

[BoW + 
VQ]

VOC08

[BoW + 
VQ]

VOC09

BoW + 
[VQ+ LLC 
+ SV]

VOC10&11

[BoW + 
Context]

VOC12

[BoW + 
VQ+ LLC 
+ FV]

Fisher Vector  

> Super Vector 

> Soft Coding 

> VQ!
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BoVW – Comparison

24.5

25

25.5

26

26.5

27

27.5

28

28.5

ILSVRC2010 ILSVRC2011

LLC + SV

FV

…… Deep CNNs

0th-order + 1st -order

0th-order + 1st-order + 2nd-order
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BoVW – Comparison

FGComp'13 (Fine-Grained classification competition)

Fisher 

Vector

AlexNet
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BoVW – Higher-order VLAD

Peng et al. Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics. ECCV, 2014.

VLAD:

2nd-order VLAD:

3rd-order VLAD:
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BoVW – Higher-order VLAD

Peng et al. Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics. ECCV, 2014.

HMDB51 UCF101

VLAD 55.5 84.8

H-VLAD 58.3 86.5

FV 58.5 86.7
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BoVW – Subspace Coding

Subspace Dictionary 

& Higher-order Coding!

Li et al. From Dictionary of Visual Words to Subspaces: Locality-constrained Affine Subspace Coding, CVPR, 2015.

Each atom is a Subspace.
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BoVW – Subspace Coding

Li et al. From Dictionary of Visual Words to Subspaces: Locality-constrained Affine Subspace Coding, CVPR, 2015.
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BoVW – Encoding Gaussians

Li et al. High-order Local Pooling and Encoding Gaussians Over A Dictionary of Gaussians. IEEE TIP, 2017.
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Encoding Gaussian over a Dictionary of  Gaussians !

Each atom is a Gaussian.



BoVW – Encoding Gaussians
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Results on SUN 397

Li et al. High-order Local Pooling and Encoding Gaussians Over A Dictionary of Gaussians. IEEE TIP, 2017.



BoVW – Summary

 Bag-of-Visual-Words (BoVW) is a classical and popular model

 Perfromance: 1st +2nd-order coding > 1st-order coding > 0th-order
coding

 Higher-order Statistics is important to Bag-of-Visual-Words
(BoVW)
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Context

1
• Higher-order Statistics in Bag-of-Visual-Words (BoVW)

2
• Higher-order Statistics in Codebookless Model (CLM)

3
• Bag-of-Visual-Words VS. Codebookless Model  

4
• Higher-order Statistical Models Meet Deep Features

Qilong Wang              Higher-order Statistical Modeling based Deep CNNs              2018-11-23



Codebookless Model (CLM)

Dictionary or Codebook

Image Local Features Representation
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CLM – Outline

 Covariance Matrix (2nd -order Statistics )

 Gaussian Model (1st + 2nd -order Statistics )

 Gaussian Mixture Model (1st + 2nd -order Statistics )

 3-order Tensor Pooling (3rd-order Statistics )
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CLM – Covariance Matrix

Application: Brain imaging [Arsigny et al 2005], Computer vision [Tuzel et

al 2006], Machine learning [Kulis et al 2009], Radar signal processing

[Barbaresco 2013].

Tuzel& Porikli& Meer [ECCV 2006, CVPR 2006, CVPR2008]: Modeling 

Image Regions with Covariance Matrices

Image or Patch  2= , , N1X x x x

1
=

1

T

T

N N N

N

N
 

Σ XJX

J I 1 1
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CLM – Covariance Matrix

H`a Quang Minh. From Covariance Matrices to 

Covariance Operators: Data Representation from Finite 

to Infinite-Dimensional Settings. Tutorial ICCV, 2017.

 

       , , , , , , , ,

,
, , ,

I x y R x y G x y B x y

f x y R R G G B B

x y x y x y

 
 

       
       

， ，

= ,i j

ijΣ x x
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CLM – Covariance Matrix

How to effectively and efficiently 

match two covariance matrices ?
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CLM – Geometry of Covariance

 Euclidean space

 Euclidean metric

 Riemannian manifold

 Affine-invariant Riemannian metric

 Log-Euclidean metric

 Convex cone

 Bregman divergences
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CLM – Geometry of Covariance

 Euclidean space

     +Sym d Sym d Mat d 
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CLM – Geometry of Covariance

 Riemannian manifold

1 1

2 2logAIRM

F

d
  

  
 

A ΒA

Affine-invariant Riemannian metric 

[Pennec et al 2006]:
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CLM – Geometry of Covariance

 Riemannian manifold
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( )Sym n( )Sym n

log( )S M



0

exp( )
!
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



 
S

M S

Log-Euclidean Riemannian 

metric [Arsigny et al. 2007]:

   log logLERM F
d  A Β



CLM – Geometry of Covariance

 Convex cone

       , ,B       A Β A Β A A Β
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      
        
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CLM – Geometry of Covariance

Symmetric 

Stein Divergence:
 

1
4 log det log det

2 2
Steind

   
   

  

A Β
AΒ

=0

[Linear Algebra and 

Its Applications, 2012]   , log detSym    A A

 
   

logdet 1 12

2 2

1 1
det

4 2 2
, log , 1 1

1
det det

d

 

 


  

  
 

    


A Β

A Β

A Β
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CLM – Geometry of Covariance

Euclidean ARIM LERM LogDet

Geodesic Distance Yes Yes Yes No

Invariance No Affine Similarity Affine 

Inner Product Distance Yes No Yes No

Decoupled Yes No Yes No

Computational Cost Fastest Slow Fast Fast
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CLM – Gaussian Model

Image or Patch  2= , , N1X x x x

Nakayama et al. [CVPR10] 

Wang et al. [PR16]

Wang et al. [CVPR16]
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1
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CLM – Matching Gaussian Models

 How to Match Gaussian Models ? 

• Information geometry 

• Embedded Riemannian manifold

• Lie group theory 
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CLM – Geometry of Gaussian

[1] H. Nakayama et al, Global Gaussian approach for scene categorization using information geometry. CVPR, 2010.

[2] S. ichi Amari and H. Nagaoka, Methods of Information Geometry. London, U.K.: Oxford Univ. Press, 2000.

Euclidean Kernel: 

Center Tangent Kernel: 

KL-divergence:
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CLM – Geometry of Gaussian

Affine Group [Gong et al.  CVPR09]

Siegel Group [Calvo et al. JMV 1990]

Riemannian Symmetric Group [Lovric et al. JMV 2000]
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CLM – Geometry of Gaussian

Peihua Li, Qilong Wang et al. Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to

Image Classification. TPAMI, 2017.
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CLM – Geometry of Gaussian

Qilong Wang              High-order Statistical Modeling based Deep CNNs              2018-11-23

Space of Gaussians is equipped with a Lie group structure.

Peihua Li, Qilong Wang et al. Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to

Image Classification. TPAMI, 2017.

 




 
   

  

1

,
,

1
T

T

TL

L
A

0




1 T  LL

log 𝐀𝜇,𝐋−𝑇 = log
𝐋−𝑇 𝜇

𝟎𝑇 1

Lie group as well 

LERM on A+(n+1)



CLM – Geometry of Gaussian

Peihua Li, Qilong Wang et al. Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to

Image Classification. TPAMI, 2017.
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CLM – Geometry of Gaussian

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

74
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ad-linear ct-linear KL-kernel MGE

Scene15 Sports8
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CLM – Gaussian Mixture Model (GMM)

Image or Patch  2= , , N1F f f f

[Goldberger et al. ICCV 03] 

[Beecks et al. ICCV 11]

[Li et al. ICCV 13] Measures for GMMs ?
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CLM – Gaussian Mixture Model (GMM)

Match-KL

[ICCV 03] 

GQFD

[ICCV 11]

SR-EMD

[ICCV 13]

GD

  
,a b ab a b
w g g

Qilong Wang              Higher-order Statistical Modeling based Deep CNNs              2018-11-23



CLM – Gaussian Mixture Model (GMM)

Match-KL

[ICCV 03] 

GQFD

[ICCV 11]

SR-EMD

[ICCV 13]

GD

  
,a b ab a b
w g g
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CLM – Gaussian Mixture Model (GMM)

Match-KL

[ICCV 03] 

GQFD

[ICCV 11]

SR-EMD

[ICCV 13]

GD

  
,a b ab a b
w g g

Very High Computational Cost!
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CLM – 3-order Tensor Pooling

Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection. TPAMI, 2018.

Image or Patch  2= , , N1X x x x  X X X
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CLM – Comparison 

Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection. TPAMI, 2018.
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CLM – Summary

 Higher-order CLM has special (non-Euclidean) geometry structure.

 Higher-order CLM leads higher dimensional representations, and
appropriate higher-order statistics bring better performance.

 Compared with BoVW, CLM attracts much less attentions.
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Context

1
• Higher-order Statistics in Bag-of-Visual-Words (BoVW)

2
• Higher-order Statistics in Codebookless Model (CLM)

3
• Bag-of-Visual-Words VS. Codebookless Model  

4
• Higher-order Statistical Models Meet Deep Features
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BoVW VS. CLM

 Limitations of BoVW

 The codebook brings quantization error. [Boiman et al. CVPR08]

 Training & coding large-size codebook is time-consuming . An 
real universal codebook is unavailable.

 Assumption of channel intendent in high-order statistics. 

 Limitations of CLM

 Measuring CLM is usually high computational cost.

 CLM seems inferior to BoVW for computer vision tasks.
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BoVW VS. CLM

 Free-form Region Modeling

 J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Freeform

region description with second-order pooling. IEEE TPAMI, 2015.

 Whole Image Modeling

 Qilong Wang, Peihua Li, Wangmeng Zuo, Lei Zhang. Towards

Effective Codebookless Model for Image Classification. Pattern

Recognition, 2016
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Free-form Region Modeling

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.
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Free-form Region Modeling

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

 SIFT/Enhanced SIFT +

 SIFT/Enhanced SIFT +

 SIFT/Enhanced SIFT + Gaussian-Center Tangent Kernel

 SIFT + Fisher Vector

1 T

N
XX

1
log T

N

 
 
 

XX
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Free-form Region Modeling

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

1
log T

N

 
 
 

XXEnhanced SIFT  +

Winner of semantic segmentation

On Pascal VOC2012
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Free-form Region Modeling

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

SIFT-O2P eSIFT-O2P LLC Fisher Vector

79.2 80.8 73.4 77.8

Caltech 101 with Clear Background
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Free-form Region Modeling

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

1. How about enhanced SIFT  + Fisher vector ?

2. Clear Background ?
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Whole Image Modeling

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

 Enhanced Local (hand-crafted) Features

 Modified Gaussian Embedding

Gaussian

Embedding
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Whole Image Modeling

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

 Enhanced Local (hand-crafted) features

• SIFT [IJCV 03]

• Enhanced SIFT [ECCV 12] (Color + Location + Filters …… )

• L2EMG [TPAMI 17]

• Enhanced L2EMG 
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Whole Image Modeling

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

 Modified Gaussian Embedding
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Whole Image Modeling

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

CLM Fisher Vector
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Whole Image Modeling

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

Caltech

101

Caltech

256

VOC2007 CUB200-

2011

FMD KTH-TIPS-

2b

Scene15 Sports8

FV+SIFT 80.87 47.47 61.8 25.8  58.37 69.37 88.17 91.37

FV+eSIFT 83.77 50.17 60.8 27.3  58.9 71.37 89.47 90.47

CLM+SIFT 84.97 48.97 55.8 18.6 51.67 71.87 88.17 88.87

CLM+eSIFT 86.37 53.67 60.4 28.1 57.77 75.27 89.47 91.57

CLM+L2EMG 82.57 48.67 56.6 19.1 62.47 72.27 88.37 88.37

CLM+eL2EMG 84.77 53.27 61.7 28.6 64.27 73.67 89.27 90.77
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Whole Image Modeling

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016
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BoVW VS. CLM – Summary

Higher-order CLM (e.g., single Gaussian) is a very competitive
alternative to BoVW model

Efficient and effective usage of geometry of higher-order CLM is
a key issue

Higher-order CLM is more sensitive to local descriptors than
BoVW model
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Context

1
• Higher-order Statistics in Bag-of-Visual-Words (BoVW)

2
• Higher-order Statistics in Codebookless Model (CLM)

3
• Bag-of-Visual-Words VS. Codebookless Model  

4
• Higher-order Statistical Models Meet Deep Features
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Coding for Deep Features

MOP-CNN 

[ECCV 2014]

SCFVC [NIPS2014]

AlexNet

[NIPS 2012]

Huge Computational burden!
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FV-CNN

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.

Only one CNN passing each image !
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FV-CNN

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.

Only one CNN passing each image !

WX + b
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FV-CNN

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.

Only one CNN passing each image !
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FV-CNN

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.
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FV-CNN

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.

FV-CNN >> FC Pooling !
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RIAD-G

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to 

Material Recognition, In CVPR, 2016 

X

 Images Convolutional layers Global GaussianRKHS

Robust

Estimator SVM


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RIAD-G

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to 

Material Recognition, In CVPR, 2016 

     
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RIAD-G

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to 

Material Recognition, In CVPR, 2016 

Classical MLE vN-MLE

Not Robust! 
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Comparison

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to 

Material Recognition, In CVPR, 2016 
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Comparison

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to 

Material Recognition, In CVPR, 2016 

Birds CUB-200-2011
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Summary

 Deep CNN features significantly improve higher-order models

 Higher-order models can significantly improve FC pooling

 Higher-order CLM outperforms Higher-order BoVW using deep

features

 Robust estimation is important for higher-order CLM under deep

CNNs
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Take home message

 Higher-order statistics plays a key role in classical modeling methods:
BoVW and CLM

 Comparison with higher-order CLM and higher-order BoVW model using
both hand-crafted features and deep features

 It is useful to combine higher-order statistics modeling with pre-trained
deep CNNs in a separated manner
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Question ?

Can we integrate higher-order CLM into deep CNN

architectures in an end-to-end learning manner for

further improvement?
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