

Higher-order Statistical Modeling based Deep CNNs (Part-I)

Classical Methods & From Shallow to Deep

Qilong Wang 2018-11-23

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Context

Higher-order Statistics

Higher-order Statistics

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Context

 Higher-order Statistics in Codebookless Model (CLM) Bag-of-Visual-Words VS. Codebookless Model Higher-order Statistical Models Meet Deep Features 	1	 Higher-order Statistics in Bag-of-Visual-Words (BoVW)
 Bag-of-Visual-Words VS. Codebookless Model Higher-order Statistical Models Meet Deep Features 	2	 Higher-order Statistics in Codebookless Model (CLM)
Higher-order Statistical Models Meet Deep Features	3	 Bag-of-Visual-Words VS. Codebookless Model
4	4	Higher-order Statistical Models Meet Deep Features

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Bag-of-Visual-Words (BoVW)

[1] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos. ICCV, 2003. (cited by 6391)
 [2] C. Dance, J. Willamowski et al. Visual categorization with bags of keypoints. ECCV Workshop, 2004. (cited by 4767)

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Bag-of-Visual-Words (BoVW)

[1] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos. ICCV, 2003. (cited by 6391)
 [2] C. Dance, J. Willamowski et al. Visual categorization with bags of keypoints. ECCV Workshop, 2004. (cited by 4767)

BoVW – Soft Coding

Each atom is a Gaussian.

$$h(i) = \frac{1}{N} \sum_{n=1}^{N} \frac{K_{\sigma}(D(w_i, x_n))}{\sum_j K_{\sigma}(D(w_j, x_n))}$$
$$K_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{1}{2} \frac{x^2}{\sigma^2})$$
$$\mathbf{Or}$$
$$x \sim p(x|\lambda) = \sum_k \omega_k p(x|q = k, \lambda)$$

Higher-order Dictionary but 0th-order Coding!

[1] Florent Perronnin. Universal and Adapted Vocabularies for Generic Visual Categorization. *TPAMI*, 2008.
[2] Van Gemert, et al. Visual Word Ambiguity. *TPAMI*, 2009.

BoVW – Super Vector

[1] Herve J ´egou *et al.* Aggregating local descriptors into a compact image representation. CVPR, 2010.
 [2] Zhou et al. Image Classification using Super-Vector Coding of Local Image Descriptors. ECCV, 2010.

Qilong Wang

BoVW – Universal GMM

Gaussian Mixture Model as Dictionary

Adaptive GMM [CVPR, 2008]

- Gaussianized Vector Representation [PRL, 2010]
- Fisher Vector [IJCV, 2013].

BoVW – Adaptive GMM

$$\hat{w}_{i}^{a} = \frac{\sum_{t=1}^{T} \gamma_{i}(x_{t}) + \tau}{T + N \times \tau},
\hat{\mu}_{i}^{a} = \frac{\sum_{t=1}^{T} \gamma_{i}(x_{t})x_{t} + \tau \mu_{i}^{u}}{\sum_{t=1}^{T} \gamma_{i}(x_{t}) + \tau},
\hat{\Sigma}_{i}^{a} = \frac{\sum_{t=1}^{T} \gamma_{i}(x_{t})x_{t}x_{t}' + \tau [\Sigma_{i}^{u} + \mu_{i}^{u}\mu_{i}^{u'}]}{\sum_{t=1}^{T} \gamma_{i}(x_{t}) + \tau}
-\hat{\mu}_{i}^{a}\hat{\mu}_{i}^{a'}.$$

MAP estimation

Liu et al. A similarity measure between unordered vector sets with application to image categorization. [CVPR 08]

Unstable & High Cost!

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

BoVW – Gaussianized Vector

Zhou et al. Novel Gaussianized vector representation for improved natural scene categorization. PRL, 2010.

BoVW – Fisher Vector

Idea: Representing a random sample X with gradients of the distribution

The <u>steepest descent direction</u> of $\log p(X | \theta)$ in a Riemannian manifold is $\mathbf{I}_{\theta}^{-1} \nabla_{\theta} \log p(X | \theta)$, which is called *natural gradient*

$$\langle X_{1}, X_{2} \rangle_{\theta} = \left\langle \mathbf{I}_{\theta}^{-1} \nabla_{\theta} \log p(X_{1} \mid \theta), \ \mathbf{I}_{\theta}^{-1} \nabla_{\theta} \log p(X_{2} \mid \theta) \right\rangle_{\theta}$$

$$= \left(\mathbf{I}_{\theta}^{-1} \nabla_{\theta} \log p(X_{1} \mid \theta) \right)^{T} \mathbf{I}_{\theta} \mathbf{I}_{\theta}^{-1} \nabla_{\theta} \log p(X_{2} \mid \theta)$$

$$= \nabla_{\theta} \log p(X_{1} \mid \theta) \mathbf{I}_{\theta}^{-1} \nabla_{\theta} \log p(X_{2} \mid \theta)$$

$$Fisher vector:$$

$$X \to \mathbf{I}_{\theta}^{-1/2} \nabla_{\theta} \log p(X \mid \theta)$$

$$2$$

Tommi S. Jaakkola and David Haussler. Exploiting generative models in discriminative classifiers. NIPS, 1998.

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

BoVW – Fisher Vector

[1] Florent Perronnin *et al.* Improving the Fisher Kernel for Large-Scale Image Classification. ECCV, 2010.
 [2] Sánchez *et al.* Image classification with the fisher vector: Theory and practice. IJCV, 2013.

BoVW – Fisher Vector

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Qilong Wang Highe

Higher-order Statistical Modeling based Deep CNNs

IM GENET Large Scale Visual Recognition Challenge

Higher-order Statistical Modeling based Deep CNNs

2018-11-23

Qilong Wang

FGComp'13 (Fine-Grained classification competition)

__ _

Team	Aircrafts	Birds	Cars	Dogs	Shoes	Overall	Fisher
Ours: SA + SB	81.46	71.69	87.79	52.90	91.52	77.07	
CafeNet*	78.85	73.01	79.58	57.53	90.12	75.82	
Ours: SA	75.88	66.28	84.70	50.42	88.63	73.18	AlexNet
VisionMetric*	75.49	63.90	74.33	55.87	89.02	71.72	
Symbiotic	75.85	69.06	81.03	44.89	87.33	71.63	
Ours: SB	80.59	58.54	84.67	35.62	90.92	70.07	
CognitiveVision*	67.42	72.79	64.39	60.56	84.83	70.00	

BoVW – Higher-order VLAD

$$VLAD: \quad \mathbf{v}_{k} = N_{k} (\frac{1}{N_{k}} \sum_{j=1}^{N_{k}} \mathbf{x}_{j} - \mathbf{d}_{k}) = N_{k} (\mathbf{m}_{k} - \mathbf{d}_{k})$$

$$2^{nd}\text{-order VLAD: } \quad \mathbf{v}_{k}^{c} = \hat{\sigma}_{k}^{2} - \sigma_{k}^{2} = \frac{1}{N_{k}} \sum_{j=1}^{N_{k}} (\mathbf{x}_{j} - \mathbf{m}_{k})^{2} - \sigma_{k}^{2},$$

$$3^{rd}\text{-order VLAD: } \quad \mathbf{v}_{k}^{s} = \hat{\gamma}_{k} - \gamma_{k} = \frac{\frac{1}{N_{k}} \sum_{j=1}^{N_{k}} (\mathbf{x}_{j} - \mathbf{m}_{k})^{3}}{(\frac{1}{N_{k}} \sum_{j=1}^{N_{k}} (\mathbf{x}_{j} - \mathbf{m}_{k})^{2})^{\frac{3}{2}}} - \gamma_{k}$$

Peng et al. Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics. ECCV, 2014.

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

BoVW – Higher-order VLAD

Peng et al. Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics. ECCV, 2014.

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

BoVW – Subspace Coding

Li et al. From Dictionary of Visual Words to Subspaces: Locality-constrained Affine Subspace Coding, CVPR, 2015.

BoVW – Subspace Coding

# samples	5	10	20	50
Xiao <i>et al</i> . [40]	14.5	20.9	28.1	38.0
LLC (4k) [16]	13.5	18.7	24.5	32.4
SV (128) [16]	16.4	21.9	28.4	36.6
FV (256) [31]	19.2 (0.4)	26.6 (0.4)	34.2 (0.3)	43.3 (0.2)
LASC (256)	19.4 (0.4)	27.3 (0.3)	35.6 (0.1)	45.3 (0.4)

Table 4. Comparison on SUN 397.

Li et al. From Dictionary of Visual Words to Subspaces: Locality-constrained Affine Subspace Coding, CVPR, 2015.

BoVW – Encoding Gaussians

Each atom is a Gaussian.

Qilong Wang

Encoding Gaussian over a Dictionary of Gaussians !

Li et al. High-order Local Pooling and Encoding Gaussians Over A Dictionary of Gaussians. IEEE TIP, 2017.

Higher-order Statistical Modeling based Deep CNNs

```
2018-11-23
```

BoVW – Encoding Gaussians

# of train	5	10	20	50
Xiao et al. [27]	14.5	20.9	28.1	38.0
Kobayashi [12]			-	46.1 (0.1)
LASC [13]	19.4 (0.4)	27.3 (0.3)	35.6 (0.1)	45.3 (0.4))
FV (SIFT) [16]	19.2 (0.4)	26.6 (0.4)	34.2 (0.3)	43.3 (0.2)
FV (SIFT+LCS) [16]	21.1 (0.3)	29.1 (0.3)	37.4 (0.3)	47.2 (0.2)
HO-LP (SIFT)	21.9 (0.4)	29.9 (0.2)	37.6 (0.2)	47.1 (0.1)
HO-LP (SIFT+LCS)	25.7 (0.3)	34.6 (0.1)	42.9 (0.2)	51.4 (0.2)

Results on SUN 397

Li et al. High-order Local Pooling and Encoding Gaussians Over A Dictionary of Gaussians. IEEE TIP, 2017.

BoVW – Summary

Bag-of-Visual-Words (BoVW) is a classical and popular model

Perfromance: 1st +2nd-order coding > 1st-order coding > 0th-order coding

 Higher-order Statistics is important to Bag-of-Visual-Words (BoVW)

Context

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Codebookless Model (CLM)

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

CLM – Outline

Covariance Matrix (2nd -order Statistics)

Gaussian Model (1st + 2nd -order Statistics)

Gaussian Mixture Model (1st + 2nd -order Statistics)

3-order Tensor Pooling (3rd-order Statistics)

CLM – Covariance Matrix

Application: Brain imaging [Arsigny et al 2005], Computer vision [Tuzel et al 2006], Machine learning [Kulis et al 2009], Radar signal processing [Barbaresco 2013].

Tuzel& Porikli& Meer [ECCV 2006, CVPR 2006, CVPR2008]: Modeling Image Regions with Covariance Matrices

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

CLM – Covariance Matrix

Qilong Wang

CLM – Covariance Matrix

- Euclidean space
 - Euclidean metric
- Riemannian manifold
 - Affine-invariant Riemannian metric
 - Log-Euclidean metric
- Convex cone
 - Bregman divergences

Euclidean space

$$Sym^+(d) \subset Sym(d) \subset Mat(d)$$

$d_E(A, B) = ||A - B||_F = ||\operatorname{vec}(A) - \operatorname{vec}(B)||$

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

High-order Statistical Modeling based Deep CNNs

Qilong Wang

2018-<u>11-23</u>
CLM – Geometry of Covariance

- Convex cone
 - $\Omega = \text{convex subset in } \mathbb{R}^n$ $\phi: \Omega \to \mathbb{R}$ = differentiable, strictly convex function Bregman divergence on Ω (Bregman, 1967) $B(\mathbf{A},\mathbf{B}) = \phi(\mathbf{A}) - \phi(\mathbf{B}) - \langle \nabla \phi(\mathbf{A}), \mathbf{A} - \mathbf{B} \rangle$ $d^{\alpha}_{\phi}(\mathbf{A},\mathbf{B}) = \frac{4}{1-\alpha^2} \left| \frac{1-\alpha}{2} \phi(\mathbf{A}) + \frac{1+\alpha}{2} \phi(\mathbf{B}) - \phi\left(\frac{1-\alpha}{2}\mathbf{A} + \frac{1+\alpha}{2}\mathbf{B}\right) \right|,$
 - $-1 < \alpha < 1$

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

CLM – Geometry of Covariance

$$\Omega = Sym^{++}, \quad \phi(\mathbf{A}) = -\log \det(\mathbf{A})$$
 [Linear Algebra and Its Applications, 2012]

$$d_{\text{logdet}}^{\alpha}(\mathbf{A}, \mathbf{B}) = \frac{4}{1 - \alpha^{2}} \log \frac{\det\left(\frac{1 - \alpha}{2}\mathbf{A} + \frac{1 + \alpha}{2}\mathbf{B}\right)}{\det\left(\mathbf{A}\right)^{\frac{1 - \alpha}{2}} \det\left(\mathbf{B}\right)^{\frac{1 + \alpha}{2}}}, -1 < \alpha < 1$$

$$\alpha = 0 \quad \text{Symmetric} \quad d_{\text{Stein}} = 4 \left[\log \det\left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) - \frac{1}{2} \log \det\left(\mathbf{AB}\right)\right]$$

Qilong WangHigher-order Statistical Modeling based Deep CNNs

CLM – Geometry of Covariance

	Euclidean	ARIM	LERM	LogDet
Geodesic Distance	Yes	Yes	Yes	No
Invariance	No	Affine	Similarity	Affine
Inner Product Distance	Yes	No	Yes	No
Decoupled	Yes	No	Yes	No
Computational Cost	Fastest	Slow	Fast	Fast

Qilong Wang Higher-order Statistical Modeling based Deep CNNs

CLM – Gaussian Model

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

CLM – Matching Gaussian Models

How to Match Gaussian Models ?

Information geometry

• Embedded Riemannian manifold

• Lie group theory

$$\rightarrow \boldsymbol{\eta} = (\hat{\mu}_1, ..., \hat{\mu}_d, \hat{\Sigma}_{11} + \hat{\mu}_1^2, ..., \hat{\Sigma}_{1d} + \hat{\mu}_1 \hat{\mu}_d, \\ \hat{\Sigma}_{22} + \hat{\mu}_2^2, ..., \hat{\Sigma}_{dd} + \hat{\mu}_d^2)^T.$$

Euclidean Kernel:	$\boldsymbol{\eta}(P)^{T}\boldsymbol{\eta}(Q)$
Center Tangent Kernel:	$\boldsymbol{\eta}(P)^T G^{\boldsymbol{\eta}}(\boldsymbol{\eta}_c) \boldsymbol{\eta}(Q)$
KL-divergence:	$(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T (\boldsymbol{\Sigma}_1^{-1} + \boldsymbol{\Sigma}_2^{-1}) (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \\ + \operatorname{tr}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_2 - \boldsymbol{\Sigma}_1 \boldsymbol{\Sigma}_2^{-1}) - 2n$

[1] H. Nakayama et al, Global Gaussian approach for scene categorization using information geometry. CVPR, 2010.
 [2] S. ichi Amari and H. Nagaoka, Methods of Information Geometry. London, U.K.: Oxford Univ. Press, 2000.

Qilong WangHigher-order Statistical Modeling based Deep CNNs2018-11-23

$$\mathcal{N}(\mu, \Sigma) \xrightarrow{\mathbf{B} = \begin{bmatrix} \mathbf{\tilde{L}} & \mu \\ \mathbf{0}^T & 1 \end{bmatrix}} \text{Affine Group [Gong et al. CVPR09]} \xrightarrow{\mathbf{B} = \begin{bmatrix} \boldsymbol{\Sigma} + \mu \mu^T & \mu \\ \mu^T & 1 \end{bmatrix}} \xrightarrow{\mathbf{H} = \begin{bmatrix} \mathbf{D} + \mu \mu^T & \mu \\ \mu^T & 1 \end{bmatrix}} \xrightarrow{\mathbf{B} = \begin{bmatrix} \mathbf{D} + \mu \mu^T & \mu \\ \mu^T & 1 \end{bmatrix}} \begin{bmatrix} \mathbf{B} = |\mathbf{\Sigma}|^{-\frac{2}{n+1}} \begin{bmatrix} \mathbf{\Sigma} + \mu \mu^T & \mu \\ \mu^T & 1 \end{bmatrix}} \\ \mathbf{B} = |\mathbf{\Sigma}|^{-\frac{2}{n+1}} \begin{bmatrix} \mathbf{\Sigma} + \mu \mu^T & \mu \\ \mu^T & 1 \end{bmatrix}} \\ \text{Riemannian Symmetric Group [Lovric et al. JMV 2000]}$$

Higher-order Statistical Modeling based Deep CNNs

2018-11-23

Qilong Wang

Definition 1. Let $\mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \in N(n), i = 1, 2$, be two arbitrary *Gaussians and* $\boldsymbol{\Sigma}_i = \mathbf{L}_i^{-T} \mathbf{L}_i^{-1}$, where \mathbf{L}_i is the Cholesky factor of $\boldsymbol{\Sigma}_i^{-1}$. We define an operation \star between two Gaussians as

$$\star : N(n) \times N(n) \to N(n)$$

$$\mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \star \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$= \mathcal{N}(\mathbf{L}_1^{-T} \boldsymbol{\mu}_2 + \boldsymbol{\mu}_1, (\mathbf{L}_1 \mathbf{L}_2)^{-T} (\mathbf{L}_1 \mathbf{L}_2)^{-1}).$$

$$(3)$$

Theorem 1. N(n) is a Lie group under multiplication operation \star as defined in (3).

Peihua Li, Qilong Wang *et al.* Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification. TPAMI, 2017.

Qilong Wang Higher-order Statistical Modeling based Deep CNNs

Space of Gaussians is equipped with a Lie group structure.

$$\log \left(\mathbf{A}_{\mu, \mathbf{L}^{-T}} \right) = \log \left(\begin{bmatrix} \mathbf{L}^{-T} & \mu \\ \mathbf{0}^{T} & 1 \end{bmatrix} \right) \quad \text{LERM on } \mathbf{A}^{+}(\mathbf{n+1})$$

Peihua Li, Qilong Wang *et al.* Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification. TPAMI, 2017.

Qilong Wang

High-order Statistical Modeling based Deep CNNs

Peihua Li, Qilong Wang *et al.* Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification. TPAMI, 2017.

Qilong Wang Higher-order Statistical Modeling based Deep CNNs 2018-11-23

[Goldberger et al. ICCV 03] [Beecks et al. ICCV 11] [Li et al. ICCV 13]

$$G(\mathbf{f}) = \sum_{i=1}^{n} w_i \mathcal{N}(\mathbf{f} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

Measures for GMMs ?

Qilong Wang Higher-order Statistical Modeling based Deep CNNs

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

CLM – 3-order Tensor Pooling

Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection. TPAMI, 2018.

Qilong Wang Higher-order Statistical Modeling based Deep CNNs 2018-11-23

CLM – Comparison

Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection. TPAMI, 2018.

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs 2018-11-23

CLM – Summary

Higher-order CLM has special (non-Euclidean) geometry structure.

 Higher-order CLM leads higher dimensional representations, and appropriate higher-order statistics bring better performance.

Compared with BoVW, CLM attracts much less attentions.

Qilong WangHigher-order Statistical Modeling based Deep CNNs2018-11-23

Context

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

BoVW VS. CLM

Limitations of BoVW

- The codebook brings quantization error. [Boiman et al. CVPR08]
- Training & coding large-size codebook is time-consuming . An real universal codebook is unavailable.
- Assumption of channel intendent in high-order statistics.

Limitations of CLM

- Measuring CLM is usually high computational cost.
- CLM seems inferior to BoVW for computer vision tasks.

BoVW VS. CLM

Free-form Region Modeling

 J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Freeform region description with second-order pooling. *IEEE TPAMI*, 2015.

Whole Image Modeling

 Qilong Wang, Peihua Li, Wangmeng Zuo, Lei Zhang. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

SIFT/Enhanced SIFT +
$$\frac{1}{N}$$
 XX^T
 SIFT/Enhanced SIFT + $\log\left(\frac{1}{N}$ **XX**^T

SIFT/Enhanced SIFT + Gaussian-Center Tangent Kernel

SIFT + Fisher Vector

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

Qilong Wang Higher-order Statistical Modeling based Deep CNNs

Winner of semantic segmentation On Pascal VOC2012

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Caltech 101 with Clear Background

SIFT-O2P	eSIFT-O2P	LLC	Fisher Vector
79.2	80.8	73.4	77.8

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

Qilong Wang Higher-order Statistical Modeling based Deep CNNs 2018-11-23

1. How about enhanced SIFT + Fisher vector ?

2. Clear Background ?

J. Carreira et al. Freeform region description with second-order pooling. IEEE TPAMI, 2015.

Qilong Wang Higher-order Statistical Modeling based Deep CNNs

Enhanced Local (hand-crafted) Features

Modified Gaussian Embedding

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

Qilong Wang Higher-order Statistical Modeling based Deep CNNs 2018-11-23

Enhanced Local (hand-crafted) features

- SIFT [IJCV 03]
- Enhanced SIFT [ECCV 12] (Color + Location + Filters)
- L²EMG [TPAMI 17]
- Enhanced L²EMG

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

Qilong WangHigher-order Statistical Modeling based Deep CNNs2018-11-23

Modified Gaussian Embedding

Qilong Wang

$$\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}) \stackrel{\boldsymbol{\pi}(\boldsymbol{\beta})}{\mapsto} \mathbf{A}(\boldsymbol{\beta}) = \begin{bmatrix} \mathbf{P} & \boldsymbol{\beta}\boldsymbol{\mu} \\ \mathbf{0}^{T} & 1 \end{bmatrix}^{\boldsymbol{\gamma}(\boldsymbol{\rho})} \stackrel{\boldsymbol{\gamma}(\boldsymbol{\rho})}{\mapsto} \mathbf{S}(\boldsymbol{\beta},\boldsymbol{\rho}) = \begin{bmatrix} \boldsymbol{\Sigma}^{\boldsymbol{\rho}} + \boldsymbol{\beta}^{2}\boldsymbol{\mu}\boldsymbol{\mu}^{T} & \boldsymbol{\beta}\boldsymbol{\mu} \\ \boldsymbol{\beta}\boldsymbol{\mu}^{T} & 1 \end{bmatrix}^{\log} \left(\begin{bmatrix} \boldsymbol{\Sigma}^{\boldsymbol{\rho}} + \boldsymbol{\beta}^{2}\boldsymbol{\mu}\boldsymbol{\mu}^{T} & \boldsymbol{\beta}\boldsymbol{\mu} \\ \boldsymbol{\beta}\boldsymbol{\mu}^{T} & 1 \end{bmatrix} \right)$$

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

Higher-order Statistical Modeling based Deep CNNs 2018-11-23

Fig. 1. Some example images and accuracy comparison (in %) between Fisher vector (FV) and our codebookless model (CLM) on various image databases.

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

	Caltech 101	Caltech 256	VOC2007	CUB200- 2011	FMD	KTH-TIPS- 2b	Scene15	Sports8
FV+SIFT	80.87	47.47	61.8	25.8	58.37	69.37	88.17	91.37
FV+eSIFT	83.77	50.17	60.8	27.3	58.9	71.37	89.47	90.47
CLM+SIFT	84.97	48.97	55.8	18.6	51.67	71.87	88.17	88.87
CLM+eSIFT	86.37	53.67	60.4	28.1	57.77	75.27	89.47	91.57
CLM+L ² EMG	82.57	48.67	56.6	19.1	62.47	72.27	88.37	88.37
CLM+eL ² EMG	84.77	53.27	61.7	28.6	64.27	73.67	89.27	90.77

Wang et al. Towards Effective Codebookless Model for Image Classification. Pattern Recognition, 2016

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

BoVW VS. CLM – Summary

Higher-order CLM (e.g., single Gaussian) is a very competitive alternative to BoVW model

Efficient and effective usage of geometry of higher-order CLM is a key issue

Higher-order CLM is more sensitive to local descriptors than BoVW model

Qilong WangHigher-order Statistical Modeling based Deep CNNs2018-11-23

Context

	Higher-order Statistics in Bag-of-Visual-Words (BoVW)
	Higher-order Statistics in Codebookless Model (CLM)
	Bag-of-Visual-Words VS. Codebookless Model
•	Higher-order Statistical Models Meet Deep Features

Qilong WangHigher-order Statistical Modeling based Deep CNNs2018-11-23

Coding for Deep Features

Higher-order Statistical Modeling based Deep CNNs

Qilong Wang

FV-CNN

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.

Qilong WangHigher-order Statistical Modeling based Deep CNNs2018-11-23

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.

M. Cimpoi et al. Deep filter banks for texture recognition and segmentation. In CVPR, 2015.

2018-11-23

Qilong Wang

Higher-order Statistical Modeling based Deep CNNs

2018-11-23

RIAD-G

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to Material Recognition, In CVPR, 2016

RIAD-G

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{\not{\rho}(\mathbf{x}_{k})}, \quad \hat{\mathbf{S}} = \frac{1}{N-1} \Phi(\mathbf{X}) \mathbf{J} \Phi(\mathbf{X})^{T}. \quad \text{Hellinger's and } \mathcal{X}^{2}$$

Kernel [TPAMI 11]

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to Material Recognition, In CVPR, 2016

RIAD-G

$$p(\mathbf{x}) = |2\pi \mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$
$$\underset{\mathbf{\Sigma}}{\min \log |\mathbf{\Sigma}|} + \frac{1}{2} \operatorname{tr}(\mathbf{\Sigma}^{-1}\mathbf{S})$$
$$\underset{\mathbf{\Sigma}}{\lim \log |\mathbf{\Sigma}|} + \operatorname{tr}(\mathbf{\widehat{\Sigma}}^{-1}\mathbf{\widehat{S}}) + \alpha D_{\mathrm{vN}}(\mathbf{I},\mathbf{\widehat{\Sigma}})$$
$$\overset{\mathbf{\Sigma}}{\sum} = \widehat{\mathbf{U}}\operatorname{diag}(\lambda_k)\widehat{\mathbf{U}}^T,$$
$$\mathbf{\Sigma} = \frac{1}{N}\sum_{k=1}^{N} (\mathbf{x}_k - \boldsymbol{\mu})(\mathbf{x}_k - \boldsymbol{\mu})^T$$
$$\lambda_k = \sqrt{\left(\frac{1-\alpha}{2\alpha}\right)^2 + \frac{\delta_k}{\alpha}} - \frac{1-\alpha}{2\alpha}$$
$$\underset{\mathbf{V}}{\operatorname{Classical MLE}}$$

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to Material Recognition, In CVPR, 2016

Comparison

Methods	FMD	UIUC Material	KTH-TIPS 2b	DTD	Open Surfaces
COV-CNN	80.2 ± 1.1	80.5 ± 3.6	76.7 ± 2.8	70.1 ± 1.2	55.0
Gau-CNN	81.3 ± 1.4	81.7 ± 2.9	77.5 ± 2.4	70.5 ± 1.5	55.7
RoG-CNN	83.6 ± 1.6	84.5 ± 1.8	79.5 ± 1.5	73.9 ± 1.1	58.9
RAID-G-CNN-Hel	84.4 ± 1.3	85.7 ± 2.1	80.4 ± 1.2	75.8 ± 1.4	60.3
RAID-G-CNN-Chi	84.9 ± 1.4	86.3 ± 2.9	81.3 ± 1.6	76.4 ± 1.1	61.1
FC [12]	77.4 ± 1.8	75.9 ± 2.3	75.4 ± 1.5	62.9 ± 0.8	43.4
FV-CNN [<u>12</u>]	79.8 ± 1.8	80.5 ± 2.7	81.8 ± 2.5	72.3 ± 1.0	59.5
FC + FV-CNN* [12]	82.4 ± 1.5	82.6 ± 2.1	81.1 ± 2.4	74.7 ± 1.0	60.9
State-of-the-art I	60.6 <u>42</u>	60.1 <u>18</u>	70.7 ± 1.6 16	61.2 ± 1.0 40	39.8 40
State-of-the-art II	66.5 ± 1.5 [4]	66.6 ± 3.1 [22]	77.3 ± 2.3 [11]	66.7 ± 0.9 [11]	-

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to Material Recognition, In CVPR, 2016

Comparison

Wang et al. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to Material Recognition, In CVPR, 2016

Summary

- Deep CNN features significantly improve higher-order models
- Higher-order models can significantly improve FC pooling
- Higher-order CLM outperforms Higher-order BoVW using deep features
- Robust estimation is important for higher-order CLM under deep CNNs

Take home message

- Higher-order statistics plays a key role in classical modeling methods: BoVW and CLM
- Comparison with higher-order CLM and higher-order BoVW model using both hand-crafted features and deep features
- It is useful to combine higher-order statistics modeling with pre-trained deep CNNs in a separated manner

Question ?

Can we integrate higher-order CLM into deep CNN architectures in an end-to-end learning manner for further improvement?

Our Related Publications

- 1. Peihua Li, Qilong Wang, Hui Zeng and Lei Zhang. Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification. **IEEE TPAMI** 39(4): 803-817, **2017**.
- 2. Peihua Li, Hui Zeng, Qilong Wang, Simon C. K. Shiu, Lei Zhang. High-order Local Pooling and Encoding Gaussians over A Dictionary of Gaussians. **IEEE TIP**, **2017**
- 3. Qilong Wang, Peihua Li, Wangmeng Zuo, Lei Zhang. Towards Effective Codebookless Model for Image Classification. **Pattern Recognition** 59: 63-71, **2016**.
- 4. Qilong Wang, Peihua Li, Wangmeng Zuo, Lei Zhang. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to Material Recognition. 29th IEEE Conference on Computer Vision and Pattern Recognition (**CVPR**), **2016**.
- 5. Peihua Li, Xiaoxiao Lu, Qilong Wang. From Dictionary of Visual Words to Subspaces: Localityconstrained Affine Subspace Coding. 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
- 6. Peihua Li, Qilong Wang, Lei Zhang. A Novel Earth Mover's Distance Methodology for Image Matching with Gaussian Mixture Models. 14th IEEE International Conference on Computer Vision (ICCV), 2013.

Thank you!